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LETTER TO THE EDITOR 

Correspondence between neural threshold networks and 
Kauffman Boolean cellular automata 
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Institut fur Theoretische Physik, Universitat zu Koln, Zulpicher Strasse 77, 5000 Koln, 
Federal Republic of Germany and Institut fur Zoologie, Sektion Biophysik, Johannes 
Gutenberg-Universitat, Saarstrasse 21, 6500 Mainz, Federal Republic of Germany 

Received 5 April 1988 

Abstract. For an asymmetric version of the McCulloch-Pitts neural network and for 
Kauffman's infinite-range Boolean network model, the time evolution of the Hamming 
distances between two different initial configurations are compared in the thermodynamic 
limit. It is shown that in both models phase transitions occur for corresponding values of 
the transition parameters and that their Hamming distances can have the same time 
evolution leading to quantitatively the same dynamics, as known from time-dependent 
Landau theory for phase transitions. 

It has often been assumed that neural network models having their roots in the 
pioneering work of McCulloch and Pitts [ l ]  share many common features with 
Kauffman's random Boolean network [2], a model of biological evolution, which has 
recently found renewed interest in the field of disordered cellular automata [3]. There 
are numerical arguments pointing to the existence of close formal relationships with 
this model [4,5]. From an analytical point of view it is plausible that a finite sequence 
of Boolean operations can be defined in terms of a neural network with weighted 
interactions and suitable thresholds. This property is well known from classical theories 
of networks, where the exclusive OR function can be realised by a functional threshold 
network. 

The microscopic dynamics of both models consisting of N randomly interconnected 
cells, formal neurons or Ising spins, which can take only two possible values (ai = +1 
or ai = - l ) ,  may be described in the following form: 

a i ( ( f + T )  = A ( a n , ( i ) ( t ) ,  * * I a n K ( i ) ( t ) )  i = l , .  . . , N ( 1 )  

with nj( i )  E { 1 , .  . . , N }  and j = 1, . . . , K. Each cell is supposed to receive exactly K 
randomly chosen distinct inputs and the quantity T may be interpreted as the delay 
time for signal transmission from one cell to another. In the Kauffman model the 
functions are determined by randomly chosen Boolean functions, whereas in models 
of threshold automata and neural networks, the functions J are defined by the rule 

i = l ,  ..., N (2) ) J = sgn( c p j ( t )  + h 
j 

where j runs over the K inputs of cell i. Here, the weights of the synaptic efficiencies 
among the cells are represented by the quantities cU sampled randomly from a given 
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distribution p(c , ] ) ,  the parameter h defining a threshold value supposed to be the sarre 
for all cells of the network. Note that the coupling coefficients are usually not symmetric. 
According to (1) the deterministic dynamics of these networks evolve synchronously 
in discrete time and the state of the network at time t is given by the state vector a( t ) .  

Since phase space consists only of a finite number of 2 N  distinct states, the system 
will inevitably evolve to attractors consisting of limit cycles or fixed points after having 
passed through a transient phase. For both models it has been convincingly demon- 
strated by analytical results as well as by computer simulations that two phases may 
exist, a chaotic phase and a frozen phase, depending on the network parameters [3-61. 
In the ordered phase the average period increases with a power of the total number 
of cells, whereas in the chaotic phase the mean cycle length increases exponentially 
with N [3-51. At the critical point the behaviour is intermediate [4]. The crucial 
quantity for the theoretical prediction of the existence of these two phases is the time 
evolution of the normalised Hamming distance HK ( t ) ,  representing the fraction of 
spins being different in two states a(')( t )  and a(2)( t ) .  For a symmetric distribution of 
the coupling coefficients an analytic expression for HK ( t )  can be derived for the neural 
network model in the thermodynamic limit under the assumption that K remains finite. 
Following closely Derrida's arguments [7] this quantity takes the form of a polynomial 
spline function of order K [4] 

with 
U 

v =  1,. . . , K 
m = l  

(4) 

and 

ZkK)(p, h )  = . . . dx, . . . dXK p(x l ) .  . . p(xk) 

x o{(Xm+l+. . .+xK + h ) 2 - ( X , + .  a .+xm)2} (5) 
where O(x) represents the Heaviside step function. The existence of a phase transition 
then depends uniquely on the nature of the fixed point HK = 0. If it is attractive, two 
initial configurations differing by an infinitesimal fraction of spins will become almost 
identical, whereas if it is repulsive, they will produce diverging trajectories. A possible 
critical point or critical line is then completely determined for a, # 0 by the equation 

Hence, any critical behaviour, depending only on the first-order coefficient a , ,  is 
governed by the relation a, = 1/ K, representing a necessary condition for the existence 
of a critical point. It should be stressed that the above derivation also holds for the 
Kauffman model. In this case the strictly non-negative coefficients a, in (4) are 
specialised to be constant as shown by Derrida and Pomeau [6] taking the value 
2 p ( p  - I ) ,  p being the probability that the randomly chosen functionsh are unity. This 
is in contrast to the neural network model, where the coefficients usually differ by 
definition of the K-dimensional integrals in (5). For HK(t )<< 1, equation (3) can be 
written as 
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the structure being reminiscent of time-dependent Landau theory for phase transitions. 
Under the assumption that t is not too large the behaviour for H K ( f )  in continuous 
time is well described by the solution of the corresponding linearised differential 
equation for a ,  # 1/K: 

h~ ( t )  = K ( a , -  l /K)HK(t)  

HK ( t )  = HK ( t = 0) exp[ K ( a ,  - 1/ K ) t ] .  

@ a )  

( 8 b )  
Thus, for a,  > 1/K, where the fixed point HK = 0 is unstable, HK ( t )  increases exponen- 
tially for small t finally reaching its asymptotic value given by a stable fixed point 
HK # 0 of (3), whereas for a,  < 1/K, HK ( t )  decreases exponentially to zero. At the 
critical point a , =  1/K the second term in (7) vanishes and the continuous-time 
behaviour of HK ( t )  can be determined from the solution of the first-order differential 
equation 

Thus, at the critical point the asymptotic time behaviour follows a simple inverse-r law. 
As has been demonstrated earlier for K G 2, the neural network, as well as the 

Kauffman model, strictly remains in the frozen phase since the fixed point HK = 0 is 
always stable due to the fact that the coefficient a ,  never exceeds the value 1/K [3-61. 

For the neural network model it is interesting to consider the special case of zero 
threshold where additional symmetries are introduced into the model and where we 
expect the highest degree of disorder provided all the other network parameters are 
fixed. Apart from the trivial fixed points HK = O  and HK = 1 the symmetry condition, 
which can be easily derived from ( 5 ) ,  

Y v = l , .  . . , K - 1  (10) I ‘ K ’  = 1 = I ‘ K ’  
K - u  

guarantees that HK =0.5 is always a fixed point of (3). In the frozen phase the fixed 
points HK = 0 and HK = 1 are stable, whereas HK = 0.5 is unstable. In the chaotic 
phase these fixed points change their stability from attraction to repulsion and HK = 0.5 
becomes a stable fixed point implying that in the chaotic phase the memory of initial 
conditions is completely eliminated after sufficiently long time t .  Making use of the 
symmetry condition (10) one can show that at the critical point for K = 3 and K = 4 
the higher-order coefficients a,,, vanish. Hence, HK( t )  remains a constant equal to 
the initial value HK ( t  = 0) at this higher-order critical point. However, for K 5 5 the 
higher-order coefficients are in general non-zero. Note that for the parameter choice 

2p( p - 1) = 1 - 1 y  (11) 

the time evolution for the Hamming distance for HK ( t )  << 1 (7) has the same coefficient 
a,  in the Kauffman model and the neural network model, giving rise to the same 
dynamics for small initial distances. Moreover, for K = 1 the time evolution for any 
arbitrary Hamming distance HI ( t )  is evidently the same. 

In order to give such agreement for larger values of the connectivity parameter K ,  
the Kauffman model has to be suitably generalised such that higher-order coefficients 
a, are all different and agree with those of the neural network model. Since there exist 
22K distinct Boolean functions one might give differing weights to different functions. 
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Another possibility is to dilute the connectivity of the system such that a fraction xi 
of the cells receive exactly i inputs for i = 1, . . . , K. Generalising the result of Derrida 
and Pomeau [6] for the time evolution of the Hamming distance HK ( I )  to arbitrary 
control parameters p leads to the following equation: 

K 

HK ( t + 7) = 2P ( 1 - P 1 c x u [  1 - ( 1 - HK ( t 1 11 (12) 
U =  1 

with coefficients a, corresponding to (3 )  

In order that the coefficients a, in (3) for the Hamming distance agree for both 
Kauffman and neural network models up to order K the following matrix equation 
has to be fulfilled: 

i = l  Y =  1,. . . , K. (14) 

Since ( 14) contains non-singular upper- and lower-triangular matrices, there exist 
unique solutions with respect to the quantities xu and ILK) ,  Y = 1, . . . , K.  In particular 
one finds 

I F ) =  1 -2p(l - p ) .  (15 )  
Furthermore, one can show that the special hierarchic structure of the integrals 1:"' 
in (5) admits only positive solutions x, satisfying the sum rule E,x, = 1. Hence, for 
any distribution p(c , )  defining the coefficients a,, the quantities xu can be determined 
from (14), whereas for given xu E [0,1] the resulting 1;"' may define a parametrised 
distribution p(c,,). In this sense the Kauffman model with suitable xu agrees with the 
neural network model defined by a given distribution p(c, )  or vice versa. 

Note that for zero threshold IFK) is strictly zero and (15) cannot be satisfied. 
Consequently, for zero threshold there exists no Kauffman network with the same 
dynamical evolution of the Hamming distance as the neural network model. On the 
other hand, the conditions x ,  = xz = . . . = x, = 0 for v E { 1,  . , . , K - 1) define generalised 
Kauffman networks for which no neural network model exists. Thus, within the above 
definition of the two models there exists a wide parameter space where the Hamming 
distances of both models are driven by the same dynamics, though there are parameter 
choices where one cannot find a corresponding neural network or Kauffman model, 
respectively. Note however, that there might be other physical quantities which behave 
quite differently within these two models, since the same behaviour with respect to 
the dynamical evolution of the Hamming distance does not necessarily imply that both 
systems underlie the same structure. 

In summary, we have shown that the above neural network model shares striking 
common features with the Kauffman model on the level of system behaviour as well 
as on a formal level. Moreover, on this level we have also demonstrated that there is 
a close relationship with the Landau description of time-dependent critical phenomena. 
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